Nonlinear Mechanics of Single-atomic-layer Graphene Sheets
نویسندگان
چکیده
The unique lattice structure and properties of graphene have drawn tremendous interests recently. By combining continuum and atomistic approaches, this paper investigates the mechanical properties of single-atomic-layer graphene sheets. A theoretical framework of nonlinear continuum mechanics is developed for graphene under both in-plane and bending deformation. Atomistic simulations are carried out to deduce the effective mechanical properties. It is found that graphene becomes highly nonlinear and anisotropic under finite-strain uniaxial stretch, and coupling between stretch and shear occurs except for stretching in the zigzag and armchair directions. The theoretical strength (fracture strain and fracture stress) of perfect graphene lattice also varies with the chiral direction of uniaxial stretch. By rolling graphene sheets into cylindrical tubes of various radii, the bending modulus of graphene is obtained. Buckling of graphene ribbons under uniaxial compression is simulated and the critical strain for the onset of buckling is compared to a linear buckling analysis.
منابع مشابه
Nonlocal Mechanical Buckling Analysis of Nano Single Layer Sheets Using Differential Quadrature method
The following article investigates buckling of moderately thick circular Nano plates with an orthotropic property under uniform radial compressive in-plane mechanical load. Taking into account nonlocal elasticity theory (Eringen), principle of virtual work, first order shear deformation plate theory (FSDT) and nonlinear Von-Karman strains, the governing equations are obtained based on displacem...
متن کاملLateral Vibrations of Single-Layered Graphene Sheets Using Doublet Mechanics
This paper investigates the lateral vibration of single-layered graphene sheets based on a new theory called doublet mechanics with a length scale parameter. After a brief reviewing of doublet mechanics fundamentals, a sixth order partial differential equation that governs the lateral vibration of single-layered graphene sheets is derived. Using doublet mechanics, the relation between natural f...
متن کاملVibration Analysis of Circular Single-Layer Graphene Sheet Using Finite Element Method
Graphene sheets are combined of Honeycombs lattice carbon-carbon bonds which have high natural frequencies, high strength, and high conductivity. Due to important applications of the graphene sheets particularly at higher frequencies, the study of their dynamic behavior is important in this frequency range. From Molecular Dynamics (MD) point of view as the dimensions of graphene sheet incline, ...
متن کاملGeometric Effects on Nanopore Creation in Graphene and on the Impact-withstanding Efficiency of Graphene Nanosheets
Abstract Single- and multilayer graphene sheets (MLGSs) are projectile-resisting materials that can be bombarded by nanoparticles to produce graphene sheets of various sizes and distributions of nanopores. These sheets are used in a variety of applications, including DNA sequencing, water desalination, and phase separation. Here, the impact-withstanding efficiency of graphene nanosheets and the...
متن کاملLevy Type Solution for Nonlocal Thermo-Mechanical Vibration of Orthotropic Mono-Layer Graphene Sheet Embedded in an Elastic Medium
In this paper, the effect of the temperature change on the vibration frequency of mono-layer graphene sheet embedded in an elastic medium is studied. Using the nonlocal elasticity theory, the governing equations are derived for single-layered graphene sheets. Using Levy and Navier solutions, analytical frequency equations for single-layered graphene sheets are obtained. Using Levy solution, the...
متن کامل